75
O

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS |

NACA TN 2911 é%
S
&

TECHNICAL NOTE 2911

A LOW-SPEED EXPERIMENTAL STUDY ‘OF THE DRECTIOﬁAL
CHARACTERISTICS OF A SHARP-NOSED FUSELAGE
THROUGH A LARGE ANGLE -OF-ATTACK RAi\TGE
AT ZERO ANGLE OF SIDESLIP
By William Letko
Langley Aeronautical Laboratoi'y

Langley Field, Va.

Reproduced From |
Best Available Copy

Washington

March 1953
DISTRIBUTION STATEMEN‘QA
Approved for Public Releas
Distribution Unlimited

20000519 152

) AgMoo-08-243Y




1A

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2911

A TOW-SPEED EXPERIMENTAL STUDY OF THE bIRECTIONAL
CHARACTERISTICS OF A SHARP-NOSED FUSELAGE
THROUGH A IARGE ANGLE-OF-ATTACK RANGE
AT ZERO ANGIE OF SIDESLIP

By William Ietko
SUMMARY

‘An investigation was made in the langley stability tunnel to deter-
mine the directional characteristics of a sharp-nosed fuselage model
through a large angle-of-attack range at zero angle of sideslip. The
results showed that the fuselage experienced a large increase in yawing
moment as the angle of attack increased, owing to asymmetrical dispo-
sition of the pair of trailing vortices emanating from the nose.

A ring or other roughness used on the nose caused (mainly by
altering the vortex disposition) a large decrease in the yawing moment
obtained at high angles of attack; in fact, for some angles of attack
the yawing moment was of a sense opposite to that obtained with a plain
fuselage. Although the reason that the ring altered the vortex dispo-
sition has not been established, the use of a ring may be convenient
for studying the reversal of vortex disposition, and hence of load,
which has been found.to be self-induced and to occur aperiodically for
some fuselages in other investigations.

INTRODUCTION

The interest in the forces and moments experienced by bodies of
revolution inclined to the line of flight arose originally in connection
with sirships. During the era of the subsonic airplane, interest in the
forces and moments experienced by bodies lagged somewhat because of the

- relatively minor contribution of the airplane fuselage to the aerodynamic

characteristics of the total airplane configuration. The advent of mis-
siles and supersonic aircraft where the body is & major component of the
configuration has again focused interest on body characteristics, espe-
cially bodies of revolution at relatively high angles of attack.
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At high angles of attack a wide discrepancy exists, of course,
between the potential flow considered in reference 1 and the actual flow
as shown by the experimental measurements presented in reference 2. The
megsurements of reference 2 showed that a pair of symmetrically disposed
vortices were present behind the inclined airship model tested, and these
might be expected to affect the body and body-and-fin characteristics
appreciably at high angles of attack.

A phenomenon which, it was believed, could be attributed to an
asymmetrical vortex disposition and to an aperiodic reversal of this
vortex disposition occurred in the calibration tests of s conical pitch
and yaw tube in the Iangley stability tunnel. The pressures measured
by the yaw orifices of the tube in pure pitch were unsteady at high
angles of attack and reversed aperiodically. The aperiodic reversal of
pressure was eliminated when a small modification was made to the nose
of the pitch and yaw tube.

As a result of these tests with the pitch and yaw tube, it was
believed that a sharp-nosed fuselage would have fluctuating forces and
moments, or at least asymmetrical directional characteristics, at high
angles of attack. Therefore, in order to determine the directional
characteristics in pitch of a sharp-conical-nosed fuselage at high
angles of attack and the effect of nose modifications on these charac-
teristics, an investigation of a fuselage with a sharp conical nose was
made in the stability tunnel. It was hoped that the results of the
tests also might shed some light on the cause of the fluctuating pres-
sures measured with the conical-nosed pitch and yvaw tube.

The modifications to the basic model consisted of increasing the
roughness of the nose by use of a ring made of i%-inch wire located at
various stations along the fuselage nose and also by covering a portion
of the nose with carborundum grains. The effect of successively cutting
off 1 and 3 inches of the nose was also investigated. TForce measure-
ments were made with a six-component balance system and the instantaneous
yawing moment was also measured with a strain-gage balance. Some circum-
ferential pressure measurements were made at one station on the model and
the instantaneous differential pressure of two yaw orifices located in
the nose of the model was measured. The results of the investigation
are presented herein.

SYMBOLS

The forces and moments are referred to the body system of axes.
The positive directions of forces, moments, and angular displacements
are shown in figure 1.

Cy' normal-force coefficient, N'/qA

Cy lateral-force coefficient, Y/qA
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Cp yawing-moment coefficient, N/qAD

N’ normal force, 1b

Y lateral force, 1b

N yvawing moment, ft-1b

q dynamic pressure, pV2/2, 1b/sq £t

p mass density of air, slugs/cu ft

v free-stream velocity, ft/sec

A maximum cross-sectional area of model, 0.0608 sq ft

D maximm body diesmeter, 0.2783 ft

X . distance along fuselage axls, measured rearward from fuselage
nose, 1in.

r fuselage ordinate, measured normal to fuselage axis, in.
(fig. 2)

P local orifice pressure, 1b/sq ft

Ap pressure difference between two yaw orifices located in
fuselage nose, lb/sq ft

H total pressure of free stream, 1b/sq ft

od angle of attack of fuselage center line, deg

B angle of sideslip of fuselage center line, deg

MODEL AND APPARATUS

The fuselage used in the investigation was a body of revolution
which was made of mshogany with & nose of brass. The fineness ratio
of the fuselage was agbout 10.4. The nose portion of the fuselage was
a cone of 15° apex angle. The coordinates of the fuselage are given
in figure 2 and a photograph of the fuselage mounted in the tunnel is
given as figure 3. Twelve equally spaced orifices were located on the
circumference of the fuselage at a station 17.675 inches from the nose.
The pressures at these orifices were measured with an alcohol manometer.
An electrical pressure pickup was built into the brass nose portion of
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the fuselage to determine the pressure difference between two yaw ori-
fices located on the sides of the cone 2.125 inches from the eapex. The
fuselage was mounted through a strain gage to a strut which, in turn,
was mounted on a six-component balance system. The strain gage was soO 6
arranged that it measured the instantaneous yawing moment of the fuselage

about the fuselage axis. The forces and moments were measured with the

balance system about the wind axes and then converted to the body-axes

system,

The instantaneous pressure difference between the yaw orifices and
the instantaneous yawing moment measured by the strain gage were photo-
graphically recorded by means of an oscillograph.

A small rectangular tail (6 inches by 3 inches) of aspect ratio 2
was used in conjunction with the fuselage for some of the tests. (See
fig. 2.) '

TESTS

The tests were made in the 6- by 6-foot test section of the ILangley
stability tunnel. Most of the tests were made at a dynamic pressure of
98.3 pounds per square foot, but some configurations were tested also at
dynemic pressures of 64.3, 39.7, and 2L4.9 pounds per square foot. The
maximum Reynolds number based on free-stream velocity and maximum fuse- .
lage digmeter was approximately 500,000. The maximum Mach number
was 0.26.

All tests were made with a dummy support strut and fairing in order
to maintain symmetrical conditions near the body. Angles of attack were
obtained by yawing the model. in the tunnel. The angle-of-attack range
was from O° to LO and, for most of the tests, the angle of sidelip was
0°. A few tests were made at -6° angle of sideslip for the same angle-
of -attack range.

No wind-tunnel-wall or strut-tare corrections were applied to the
data.

RESULTS AND DISCUSSION

The results of the investigation are presented in figures 4 to 16. .
Although both the static and the instantaneous yawing moments of the
model were measured, most of the data presented are from the static
measurements obtained with the balance system. -
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The variation of normal-force and yawing-moment coefficients (deter-
mined from balance-system readings ) of the fuselage with angle of attack
for zero sideslip angle is shown in figures L4 and 5, respectively, for
several values of dynamic pressure. The normal-force coefficient shown
in figure 4 increases with angle of attack as expected and, in general,
increases with an increase in dynamic pressure for all the angles of
attack tested. The yawing moment (fig. 5) is small and fairly constant
up to about 15° angle of attack but increases rapidly above 15° and
reaches a rather high meximum positive value at about 35° angle of
attack. Repeat tests of the fuselage, which was a body of revolution,
resulted in a yawing moment which consistently showed the same vari-
ation with angle of attack. With a perfectly symmetrical fuselage the
variation would be expected to differ from test to test; that is, for
one test the yawing moment might become more positive with angle of
attack, whereas for the next test it might become negative, depending
on initial trends. The tendency of the yawing moment of the fuselage
to become more positive with angle of attack in the present tests was
found to be associated with model characteristics rather than tunnel
" test setup because & test (data not presented) with the model inverted
showed the yawing moment to be in the same direction relative to the
fuselage. An increase in dynamic pressure generally decreased the
values of yawing moment in the angle-of-attack range near the angle for
maximum positive yawing moment; however, the effect is not consistent
for all angles of attack. (See fig. 5.)

The cross Reynolds numbers corresponding to the dynamic pressures
of these tests were fairly low so that the critical cross Reynolds num-
ber for a cylinder, based on maximum fuselage diameter, was attained at
the highest dynamic pressure of the tests at about 25° angle of attack
of the fuselage. It is believed, however, that even if the critical
cross Reynolds number were reached at lower angles of attack, the general
variations of the forces and moments with angle of attack would not be
altered sppreciably for the body tested.

Studies of records such as figure 10, which will be discussed later,
showed that a reversal of lateral load with time, expected on the basis
of previous tests, was not obtained in the present tests. The loading
on the fuselage tended to reverse, however, when the angle of attack was
increased sbove 35°. This tendency is indicated by the large decrease
in yawing moment and an actual change in sign of the yawing moment at
a dynamic pressure of 24.9 pounds per square foot and an angle of attack
of 38°. (See fig. 5.) A change in direction of the lateral load and
yawing moment relative to that obtained for the plain model was obtained,

however, even at angles of attack as low as 200, when a-fg -inch-diameter

 wire was wrapped around the nose portion of the fuselage to form a ring

1 inch from the apex. Figure 6 shows that the values of yawing moment
are the same for ring-off and ring-on conditions up to an angle of attack
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of 15°. Above this point, the yawing-moment coefficients for the plain
fuselage become more positive with angle of attack, whereas the yawing-
moment coefficients for the model with the ring on the nose show an oppo-~
site tendency and become negative as the angle of attack is increased.
However, the absolute values of yawing moment are smaller for the ring-
on condition. A study of the lateral-force coefficients presented in
figure 6 indicates that the decrease in yawing-moment coefficients is
caused by a reduction of lateral load and by a shift in the center of
pressure of the lateral load.

A cursory tuft-probe examination at 35O angle of attack and very
low speed showed that the vortex disposition along the plain fuselage
was asymmetrical, even for positions very near the apex. The asymmet-~
rical disposition of the vortices was responsible for the large values
of yawing moment obtained with the plain fuselage at angles of attack
above 15°. This initial asymmetrical disposition of the vortices was
considerably altered and appeared reversed when the ring was placed on
the fuselage nose. This altered disposition of the vortices accounts
for the difference in the variations of the lateral-load and yawing-
moment coefficients with angle of attack obtained for the plain model
and those obtained for the model with ring on the nose. The ring
decreased the absolute values of yawing moment, and a study of the
lateral-force coefficients, presented in figure 6, indicates that this
effect is due to a reduction of lateral load and, also, to a shift in
center of pressure of the lateral load. The reversal in direction of
the load at one section of the fuselage, caused by the ring, can readily
be seen in figure 7, which presents a comparison of the pressure distri-
butions for the ringed and the plain fuselage obtained around the periph-

ery about 17% inches from the nose at a dynamic pressure of 64.3 pounds

per square foot. The pressure distributions shown in the figure appear
equal and opposite; this result indicates equal and opposite local
lateral loads. The pressure difference measured by the two yaw ori-
ficies, which should give a good indication of the magnitude of the
lateral load at the yaw-orifice location, indicates the reversal in
direction of load caused by the ring; however, the pressure difference
is not of equal magnitude for both conditions. (See fig. 8.) The ring,
therefore, must affect the pressures at different lengthwise stations

to different extents; such action, of course, would not only change the
resultant loading but would also cause a shift in the center of pressure.
‘The mechanism behind the change in initial vortex disposition, and hence
in the load, brought about by the ring is not apparent; nevertheless,
even when the model is at -6° sideslip angle, which gives the model a
larger initial positive yawing moment, the ring is capable of causing a
reversal in direction of the load at some angles of attack. .(See

fig. 9.) Results (not presented) of tests with the ring skewed about
different radial axes in the plane of the ring did not have any apparent
effect on the action of the ring in reversing the direction of load.




NACA TN 2911 - 7

From the foregoing discussion, it appears that the effects of the ring
not only can overshadow the model characteristics that initially caused
the yawing moment to increase positively with angle of attack but also
can overcome initial tendencies which are caused by an angle of side-
slip of at least 6°, the largest sideslip angle tested.

Records of the instantaneous yawing moment and yaw-orifice pressure
difference are presented in figure 10 for the plain fuselage and the
fuselage with ring 1 inch from the nose. This figure shows that the
moments and pressures were very unsteady at high angles of attack. How-
ever, since the natural frequency of the model and strain gage, deter-
mined experimentally to be 45 to 50 cycles per second, is the predomi-
nant frequency of the yawing moments recorded, it is unlikely that the
records of the yawing moments obtained give & reliable indication of
either the frequency or the amplitude of the forcing function. Although
the natural fregquency of the pressure pickup system was not determined,
it appears to be very high, and any changes in pressure difference
recorded (other than the high-frequency "hash" seen on most of the
records ) are believed to be more representative of the forcing impulses
than the yawing-moment records. In figure 10(v), a square-wave vari-
ation can be seen in the record of pressure difference for the model with
ring on at 36° angle of attack. In the present tests, this was the only
instance in which this type of variation was obtained; however, although
the magnitude of the pressure difference varied considerably, the sign
did not change as it did in earlier tests of = plain conical-nosed pitot
tube. This variation indicates a periodic shifting but not a complete
reversal of the original vortex disposition. The differences in shape
of the fuselage and the pitot tube rearward of the conlcal nose sec-
tion (pitot tube had a straight, cylindrical portion of constant diam-
eter) probably caused the results for the fuselage to be somewhat dif-

. ferent from those expected on the basis of the tests of the conical-
nosed pitot tube.

A comparison of the yawing moments obtained from balance readings
with ‘those obtained from strain-gage records (such as fig. 10) is shown
in figure 11. (The values of yawing moment were obtained from the
records used in the comparison by taking half the amplitude defined by
two horizontal lines which bounded a megjority of the wave traces of
instantaneous yawing moment.) The variation of yawing moment with angle
of attack is seen to be similar in each case. The differences in values
determined by the two methods can probably be attributed mainly to dif-
ferences in strut-tare values, which were not determined for either case.

The effects on the yawing moment of varying the location of the
ring from % inch to 8 inches from the nose of the model can be seen in

figure 12. As the distance of the ring from the nose increases, the
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effectiveness of the ring in reducing the yawing moment appears to
decrease, and the first 3 inches of the nose apparently is the most
critical region so far as altering the load on the fuselage is concerned.
Tests of a fuselage having a short elliptical nose showed that the ring
had only a small effect on the yawing moment of the fuselage.

The effects of cutting 1 and 3 inches off the nose of the fuselage,
to form a blunt nose, can be seen in figure 13. The yawing moments were
of opposite sign to those obtained with the plain fuselage at angles of
attack above 25° and were small throughout the angle-of-attack range,
in contrast to those obtained with the plain fuselage.

In the course of the present investigation it was found that the
loading on the fuselage could also be reversed by increasing the rough-
ness of the nose with carborundum grains. Figure 14 shows that the
effect of the carborundum grains on the yawing-moment coefficient is
very similar to that of the ring.

In figure 15 is shown a comparison of the yawing moments of the
plain fuselage and of the fuselage with a rectangular tail of aspect
ratio 2. The genersl variation of yawing moment is the same for both
cases but, in the angle-of-attack range between 20° and 309, the tail-
on configuration has a smaller yawing moment than the plain fuselage,
Possibly because of the effects of the asymmetrical vortex distribution
on the tail. At higher angles of attack, the tail is probably at least
partly outside the region of influence of the vortices. The effects of
the ring on the tail-on configuration (fig. 16) are similar to those
obtained when the ring is used with the plain fuselage; however, the
ring is not quite as effective in reversing the moments as it was with
the plain fuselage.

CONCLUDING REMARKS

An investigation was made in the Iangley stability tunnel to deter-
mine the directional characteristics of a sharp-nosed fuselage model
through a large angle-of-attack range at zero angle of sideslip. The
results showed that the fuselage experienced a large increase in yawing
moment as the angle of attack increased, owing to asymmetrical dispo-
sition of the pair of trailing vortices emanating from the nose.

A ring or other roughness used on the nose caused (mainly by
altering the vortex disposition) a large decrease in the yawing moment
obtained at high angles of attack; in fact, for some angles of attack
the yawing moment was of a sense opposite to that obtained with a plain
fuselage. Although the reason that the ring altered the vortex dispo-
sition has not been established, the use of a ring may be convenient
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for studying the reversal of vortex disposition, and hence of load,
which has been found to be self-induced and to occur aperiodically for
some fuselages in other investigations.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronsautics,
Langley Field, Va., October 10, 1952.
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Relatwve wind

Figure 1.- System of axes used. Arfovs indicate positive directions of
forces, moments, and angular displacements.
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Figure 6.- Variation with angle of attack of the yawing-moment and
lateral-force coefficients of the plain fuselage and the fuselage

with %g-—inch-diameter ring located 1 inch from the nose. B = 0°;

q = 98.3 pounds per square foot.
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Figure 7.- Comparison of the peripheral pressure distributions 17% inches

from the nose for the plain fuselage and for the fuselage with ring
located 1 inch from the nose. B = Oo; q = 64.3 pounds per square foot.
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Figure 10.- Records at several angles of attack of the instantaneous
yawing moment and the yaw-orifice pressure difference for the plain

fuselage and for the fuselage with 1—16—1nch-dia.meter ring located
1 inch from the nose. B = OO; q = 98.3 pounds per square foot.
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